Le nombre de Reynolds – Science étonnante (2024)

Tous les liquides ne s’écoulent pas de la même manière. Si vous observez l’eau d’un fleuve, vous pouvez voir que son écoulement est en permanence le siège de multiples tourbillons. Au contraire, l’huile qui s’écoule hors d’une bouteille ne tourbillonne pas du tout.

Étonnamment, la frontière entre ces deux situations est assez mince, et on peut la percevoir au moyen d’une quantité appelée nombre de Reynolds. Comme nous allons le voir, la compréhension de la transition entre les deux comportements fait encore l’objet de recherches pointues [1].

La turbulence

Quand l’écoulement d’un liquide est le siège de multiples tourbillons, on dit que cet écoulement est turbulent. Au contraire si l’écoulement semble se faire de manière bien parallèle, on parle d’écoulement laminaire.

Les écoulements turbulents se repèrent particulièrement au voisinage d’obstacles, par exemple les piles d’un pont. La différence entre les deux situations est schématisée sur la figure ci-contre : en haut l’écoulement laminaire, en bas l’écoulement turbulent.

Ce qui fait la différence, c’est que dans un écoulement turbulent, les petites perturbations donnent naissance à des tourbillons. Au contraire dans un écoulement laminaire, les perturbations se résorbent rapidement et l’écoulement reprend son cours tranquille.

Comment savoir à l’avance si un écoulement va être le siège de turbulence ? Cela dépend principalement de la viscosité du liquide, car celle-ci agit comme un frottement qui va freiner les perturbations et empêcher les tourbillons d’apparaître. Mais à quel moment la viscosité est-elle suffisante pour freiner l’apparition des tourbillons turbulents ?

Une lutte entre viscosité et inertie

Pour savoir si la viscosité est assez forte pour freiner les tourbillons, il faut la comparer à l’inertie de l’écoulement. La viscosité tend à faire disparaître les tourbillons, alors que l’inertie les propage. Pour comprendre cet affrontement entre viscosité et inertie, prenons l’analogie avec un skieur (au lycée, en méca, il y a tout le temps des skieurs).

Vous êtes un skieur et vous arrivez en bas d’une pente, à un endroit où la piste devient plate. Quelle distance allez-vous parcourir sur le plat grâce à votre élan ? Évidemment, ça dépend : d’une part de la vitesse que vous avez acquise, et d’autre part de l’intensité des frottements qui vont vous freiner. Il s’agit d’une lutte entre votre inertie accumulée et les frottements de la neige.

Pour quantifier votre inertie, on peut regarder votre énergie cinétique, qui vaut comme vous le savez \((1/2) m v^2\). Pour les frottements, on peut les exprimer sous la forme d’une force proportionnelle à votre vitesse, par exemple \(k.v\) où \(k\) est un coefficient de frottement.

Si vous faite le rapport des deux, vous obtenez \(mv/k\), qui est une quantité qui vous donne en gros la distance que vous allez parcourir grâce à votre élan. Si vous êtes lourd, rapide et que la neige glisse bien, vous irez plus loin que si vous êtes léger, lent et que la neige est de la soupe.

Le nombre de Reynolds

Retournons à notre liquide, et appliquons lui un raisonnement analogue au skieur. Imaginons que le liquide s’écoule à une vitesse moyenne v, dans un tube de diamètre D. Si \(\rho\) est la masse volumique du fluide, l’énergie cinétique du fluide est en gros proportionnelle à \(\rho v^2\).

Pour la viscosité, elle fonctionne presque comme les frottements du skieur. Pour faire simple, on peut dire que la viscosité est ce qui fait que le liquide a tendance à coller à la paroi du tube. Les forces de viscosité sont d’autant plus importantes que la viscosité \(\mu\) du liquide est élevée, que sa vitesse v est importante, et que le diamètre \(D\) du tube est petit. Au final, l’énergie dissipée par les forces de viscosité est proportionnelle à la quantité \(\mu v /D\)

Pour calculer le ratio inertie/frottement dans le liquide, on fait le rapport des deux formules que je viens de détailler, et on obtient cette quantité appelée le nombre de Reynolds de l’écoulement

\(Re = \frac{\rho v D}{\mu}\)

Ce nombre va nous permettre de détecter l’apparition de la turbulence : plus il est élevé, plus l’inertie est importante et la viscosité faible, et plus les tourbillons pourront se développer.

Quelques valeurs du nombre de Reynolds

Il faut faire deux observations importantes sur le nombre de Reynolds. La première est qu’il n’a pas d’unité. C’est en effet le rapport de deux quantités qui sont des énergies volumiques, et le résultat est donc un nombre sans dimension.

La deuxième observation est qu’il ne dépend pas uniquement du liquide que l’on considère : il n’y a pas de sens à parler du nombre de Reynolds «de l’eau», puisque cela dépend des caractéristiques de l’écoulement (vitesse et diamètre du tube).

Reprenons les deux situations dont je parlais au départ : l’écoulement d’un fleuve et de l’huile d’une bouteille. Il ne s’agit pas vraiment d’écoulements dans un tube, mais on va faire comme si.

Le tableau ci-contre montre le calcul du nombre de Reynolds dans les deux situations. Vous pouvez constater qu’il est 100 millions de fois plus élevé dans le fleuve que dans la bouteille d’huile !

Pas étonnant que les tourbillons aient bien plus de chance de se développer dans le fleuve que dans la bouteille d’huile !

Une transition brutale

Bien que le nombre de Reynolds puisse varier de manière énorme d’un écoulement à l’autre, la frontière est entre l’écoulement laminaire et l’écoulement turbulent est en fait assez mince. On estime qu’un écoulement devient turbulent pour un nombre de Reynolds supérieur à 2000.

Ce nombre de Reynolds critique correspond en gros au moment où les forces visqueuses ne sont plus suffisamment fortes pour résorber les tourbillons. Comme vous pouvez vous en douter, la compréhension de cette limite entre turbulent et laminaire est d’une grande importance pour beaucoup d’applications technologiques, comme en ingénierie des procédés ou en aéronautique.

Une détermination précise du nombre de Reynolds critique

La valeur que j’ai donnée pour le nombre de Reynolds critique est en fait une approximation obtenue expérimentalement. Mais il est assez difficile de réaliser des écoulements dont la vitesse et la viscosité soient si bien contrôlés qu’on puisse observer avec précision la transition entre l’écoulement laminaire et l’écoulement turbulent.

Dans un article récent paru dans Science [1], des chercheurs ont réalisé une expérience très délicate pour déterminer avec précision ce moment critique où les perturbations deviennent des tourbillons qui subsistent au lieu de se résorber.

Pour cela ils ont créé un écoulement d’eau dans un tube de 4mm de diamètre et 15 mètres de long, à des vitesses autour de 0.5 m/s. Comme vous pouvez le vérifier, cela correspond justement à un nombre de Reynolds autour de 2000. Ils ont ensuite fait varier très légèrement la vitesse, et ont créé artificiellement des petites perturbations.

En observant l’amplification et la décroissance des perturbations, ils ont pu proposer une valeur précise pour le nombre de Reynolds critique, séparant le cas laminaire du cas turbulent : 2040. Ils sont même allés plus loin en étudiant précisément la manière dont les perturbations se développent, se propagent, voire se scindent. Les curieux peuvent aller voir l’article !

[1] A. Kavila et al., The Onset of Turbulence in Pipe Flow, Science 333, n°6039, p.192 (2011)

Billets reliés :

L’étrange viscosité des fluides non-newtoniens

Ce qu’il se passe pour les tous petit* nageurs, qui ont un nombre de Reynolds très bas, traduit chez Dr. Goulu.

Le nombre de Reynolds – Science étonnante (2024)

References

Top Articles
Direct Deposit: What is it and is it Safe?
Its vs. It’s: Learn the Difference
Transfer and Pay with Wells Fargo Online®
Cost Of Fax At Ups Store
Spectrum Store Kansas City Photos
Tyson Employee Paperless
Duralast Battery H6-Dl Group Size 48 680 Cca
Chase Bank Pensacola Fl
Craigslist Shallotte
Great Clips Coupons → 20% Off | Sep 2024
‘An affront to the memories of British sailors’: the lies that sank Hollywood’s sub thriller U-571
Busted Newspaper Williams County
Blaire White's Transformation: Before And After Transition
8 Casablanca Restaurants You’ll Want to Fly For | Will Fly for Food
Best Builder Hall 5 Base
Busted Newspaper Hampton County VA Mugshots
Power Supplemental Payment 2022 Round 4
Linus Tech Tips Forums
A Man Called Otto Showtimes Near Palm Desert
Winzige Tyrannen: So klein begann das Leben der Tyrannosaurier
Maryland Parole Hearing Schedule 2023
Stellaris Resolutions
Dna Profiling Virtual Lab Answer Key
Www.publicsurplus.com Motor Pool
Apple iPhone SE 2nd Gen (2020) 128GB 4G (Very Good- Pre-Owned)
Walgreens On Nacogdoches And O'connor
Publix Super Market At Lockwood Commons
Denise Frazier Leak
Search results for: Kert\u00E9sz, Andr\u00E9, page 1
Tsymo Pet Feeder Manual Pdf
Optimizing Sports Performance Pueblo
Lo que necesitas saber antes de desrizarte el cabello
Academy Sports Meridian Ms
Locals Canna House Deals
Nationsotc.com/Bcbsri
Why Larry the cat of 10 Downing Street wishes Starmer hadn’t won the election
Ups Customer Center Locations
EU emissions allowance prices in the context of the ECB’s climate change action plan
'I want to be the oldest Miss Universe winner - at 31'
KOBALT K15CS-06AC MANUAL Pdf Download
Ice Quartz Osrs
Metalico Sharon Pa
Son Blackmailing Mother
2015 | Ducati 1299 Panigale S Test
Heatinghelp The Wall
Unblocked Games Shooters
Blow Dry Bar Boynton Beach
CareLink™ Personal Software | Medtronic
Mugshots Shawnee County
Restaurants Near Defy Trampoline Park
Yolo Massage Clinic Kirkland Reviews
Mecklenburg Warrant Search
Latest Posts
Article information

Author: Catherine Tremblay

Last Updated:

Views: 5239

Rating: 4.7 / 5 (47 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Catherine Tremblay

Birthday: 1999-09-23

Address: Suite 461 73643 Sherril Loaf, Dickinsonland, AZ 47941-2379

Phone: +2678139151039

Job: International Administration Supervisor

Hobby: Dowsing, Snowboarding, Rowing, Beekeeping, Calligraphy, Shooting, Air sports

Introduction: My name is Catherine Tremblay, I am a precious, perfect, tasty, enthusiastic, inexpensive, vast, kind person who loves writing and wants to share my knowledge and understanding with you.